

Nitrogen fertiliser requirements for representative soils of the Lower Burdekin cane growing district

Julian Connellan¹, Phil Moody²

¹Sugar Research Australia, Burdekin

²Queensland DSITI, Dutton Park

David Defranciscis

(Chairman) Industry Reference Group

10th March 2015

Background

- October 2009 the Great Barrier Reef Protection Amendment Act was introduced requiring growers to follow a regulated method for determining N application rates.
- In response to industry concern DEHP funded a number of trials across the Burdekin.
- The trials began in 2011
- Aim is to assess the suitability of nitrogen application rates in the Burdekin, giving consideration to profitability, sustainable production and the potential for impacts on the environment.

Current status

- To date established and harvested 19 replicated block trials in the Delta and BRIA cane growing areas
- 10 established in 2011, 4 established in 2012, 1 in 2013 and 4 established in 2014
- 14 are active, these are:
 - four plant
 - one 1st ratoon
 - three 2nd ratoon
 - six 3rd ratoon
- Active sites range in size from 4 to 10 hectares
- Another 4 sites are currently being established
 - 2 in the Delta and 2 in the BRIA

Trial design

Three to four treatments

- Treatment 1 low rate (P130 kg N/ha, R170 kg N/ha)
 Treatment 2 rate determined by the Regulated 1 ethod/Six Easy Steps (P170 kg N/ha, R210 kg N/ha)
- Treatment 3 traditional grower rate (P210 kg N/ha, R250 kg N/ha)
- Treatment 4 a high rate (P250 kg N/ha, R290 kg N/ha)
- Three to four replications at each site
- Six Easy Steps rate based on DYP of 180 t cane/ha and discount for soil mineralisation potential

2014 Harvest results

Mean cane yield (tc/ha) for each nitrogen rate treatment at six 2nd ratoon trial sites

Grower ID	Treatments					
Grower ib	170 kg N/ha 210 kg N/ha 250 kg N/ha		250 kg N/ha	290 kg N/ha		
2	107.5	105.8	106.2			
3*	143.5	145.5	150.6	154.1		
6	107.7 ^b	111.4 ^{ab}	115.7ª	117.2ª		
7	128.2	124.6	124.5	125.5		
8	79.1 ^b	81.6 ^b	81.5 ^b	85.6ª		
10	98.5 ^c	102.5 ^{bc}	106 ^b	112.9ª		

Sites with P<0.05 are highlighted

Means followed by a common letter are not significantly different at the 5% level

*Indicates elevated levels of nitrates in irrigation water (>2 mg/L of NO₃-N)

Mean sugar yields (ts/ha) for each nitrogen rate treatment at six 2nd ratoon trial sites

Grower ID	Treatments						
Growering	170 kg N/ha	210 kg N/ha	250 kg N/ha	290 kg N/ha			
2	16.3	16	15.9				
3	21.9	22.1	22.7	22.9			
6	18.8	19.2	19.1	19.4			
7	20	19.4	19.2	19.2			
8	13.7	14	14	14.4			
10	14.5	14.7	14.9	15.3			

Grower 6

Grower 6

Mean cane yield (tc/ha) for each nitrogen rate treatment at four 1st ratoon trial sites

GrowerID	Treatments					
Grower ID	210 kg N/ha	250 kg N/ha	290 kg N/ha			
5	132.1	134.8	135.2			
12	97.1	94.7	98.4			
13	120.9 ^b	130.4ª	136.4ª			
14*	145.2	147.6	149.3			

Sites with P<0.05 are highlighted

Means followed by a common letter are not significantly different at the 5% level *Indicates elevated levels of nitrates in irrigation water (>2 mg/L of NO_3-N)

Mean sugar yields (ts/ha) for each nitrogen rate treatment at four 1st ratoon trial sites

Grower	Treatments					
Grower	210 kg N/ha	290 kg N/ha				
5	19.5	19.7	20			
12	15.9	14.9	15.3			
13	17.6 ^b	19.6ª	20.2ª			
14	21.3	21.5	21.7			

Mean cane yield (tc/ha) for each nitrogen rate treatment for a plant crop

Originar ID	Treatments				
Grower ID	150 kg N/ha	190 kg N/ha	230 kg N/ha		
15	196.6	201.4	198.5		

Mean sugar yields (ts/ha) for each nitrogen rate treatment for a plant crop

GrowerID	Treatments			
Grower ID	150 kg N/ha	190 kg N/ha	230 kg N/ha	
15	26.2	25.7	25.5	

Note. Moddus was applied to this trial site

Economic investigation

- DAF economist currently undertaking an economic investigation
- Data used for this investigation include:
 - yield, relative CCS, fertilising and harvesting costs and levies
- Using these data they will be able to:
 - Compare net revenue for each replicate
 - Compare the average net revenue of each treatment and for each crop stage
 - Calculate the average net revenue over the crop cycle
- Results to become available later this year

Apparent nitrogen fertiliser use efficiency (aNUE) *kg of N applied to produce 1 tonne of sugarcane*

Grower ID	Crop Stage	Applied N (kg/ha)	Yield (tc/ha)	kg of N applied to produce 1 tonne of sugarcane	Crop Stage	Applied N (kg/ha)	Yield (tc/ha)	kg of N applied to produce 1 tonne of sugarcane
2		210	113	1.9		210	106	2.0
6	1st	210	122	1.7	2nd	210	111	1.9
8	Ratoon	210	82	2.6	Ratoon	210	82	2.6
10		210	125	1.7		210	102	2.1
5	Diant	170	95	1.8	1.01	210	132	1.6
13	Crop	170	128	1.3	Rotoon	210	121	1.7
15	Стор	150	197	0.8	Raioon			

kg of applied N to produce 1 tonne of sugarcane

A DYP of 180 t cane and the 1.4/1 multiplier would result in an apparent N use efficiency of 1.2 kg N/tonne cane (NOTE: Does not include discounts for soil N mineralisation)

Apparent nitrogen fertiliser use efficiency (aNUE) *kg of N applied to produce 1 tonne of sugarcane*

Grower ID	Crop Stage	Applied N (kg/ha)	Yield (tc/ha)	kg of N applied to produce 1 tonne of sugarcane	Crop Stage	Applied N (kg/ha)	Yield (tc/ha)	kg of N applied to produce 1 tonne of sugarcane
2		210	113	1.9		210	106	2.0
6	1st	210	122	17	2nd	210	111	19
8	Ratoon	210	82	2.6	Ratoon	210	82	2.6
10		210	125	1.7		210	102	2.1
5	Diant	170	95	1.8	1 ot	210	132	1.6
13	Crop	170	128	1.3	Rotoon	210	121	1.7
15	Ciop	150	197	0.8	Rai00II			

kg of applied N to produce 1 tonne of sugarcane

A DYP of 180 t cane and the 1.4/1 multiplier would result in an apparent N use efficiency of 1.2 kg N/tonne cane (NOTE: Does not include discounts for soil N mineralisation)

Closing comments

•N requirement calculated by the Regulated Method/Six Easy Steps was more than enough for maximum cane and sugar yields for most crops harvested in 2014.

• One 1st ration crop required more than the Regulated Method/Six Easy Steps recommended N application rate to achieve maximum cane and sugar yield.

-This was also observed in the plant crop at the same site

THANK YOU